Differential geometry: a natural tool for describing symmetry operations.
نویسندگان
چکیده
Differential geometry provides a useful mathematical framework for describing the fundamental concepts in crystallography. The notions of point and associated vector spaces correspond to those of manifold and tangent space at a given point. A space-group operation is a one-to-one map acting on the manifold, whereas a point-group operation is a linear map acting between two tangent spaces of the manifold. Manifold theory proves particularly powerful as a unified formalism describing symmetry operations of conventional as well as modulated crystals without requiring a higher-dimensional space. We show, in particular, that a modulated structure recovers a three-dimensional periodicity in any tangent space and that its point group consists of linear applications.
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملλ-Symmetry method and the Prelle-Singer method for third-order differential equations
In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...
متن کاملApplication of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کاملQuantum Field Theory and Differential Geometry
We introduce the historical development and physical idea behind topological Yang-Mills theory and explain how a physical framework describing subatomic physics can be used as a tool to study differential geometry. Further, we emphasize that this phenomenon demonstrates that the interrelation between physics and mathematics have come into a new stage.
متن کاملCubic Differentials in the Differential Geometry of Surfaces
We discuss the local differential geometry of convex affine spheres in R and of minimal Lagrangian surfaces in Hermitian symmetric spaces. In each case, there is a natural metric and cubic differential holomorphic with respect to the induced conformal structure: these data come from the Blaschke metric and Pick form for the affine spheres and from the induced metric and second fundamental form ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section A, Foundations of crystallography
دوره 65 Pt 5 شماره
صفحات -
تاریخ انتشار 2009